

ART20C Pressure Independant Control Valve (PICV)

ART20C Pressure Independant Control Valve (PICV)

Technical Data and Installation Instructions

PN 25

Main features:		
	 ART20C is used for balancing the flow in cooling, ART20C is an automatic balancing valve with follo Easy required flow rate selection using preset Automatic balancing in the event of fluctuati ches; Flow rate modulation along the whole actuat Flexibility if the system is modified after the fir Reduction of balancing costs, improved energy 	owing features: tting dial; ing pressure conditions in system bran- tor stroke; st installation;
	It is supplied with external thread. It is made of "CR" brass ("CR" - Corrosion Resistar This article is made in compliance with the qu 9001:2008 standard. All articles are tested accord It can be used in a wide variety of sectors: heating, and generally with any non corrosive liquid.	ality management requirements of ISO ling to the EN 12266-1:2003 standard.
Technical data:		
	Max. static working pressure Max. differential pressure Max. flow temperature Min. temperature Fluids: Material of parts in contact with water:	25 bar 4 bar (400 kPa) 120 °C -10°C Water and Glycol Valve body; Shutter, etc.
	Materials: O-rings: Threads:	"CR"Brass (EN 12165-CW602N-M) EPDM Perox ISO 228
Approved by:		
Ablazed p3.	rnr	
	L HL	

ART20C Pressure Independant Control Valve (PICV)

Models:

	ART20CLF - Pressure independent control valve - PN 25 - "CR" Brass - Low Flow							
			Flow rate range					
DN	Material	Thread	(l/s)	(l/h)	(GPM)	Part code		
10		G. 1/2"	0.012 ÷ 0.042	43 ÷ 150	0.19 ÷ 0.66	ADPI20CLF038		
15	CR Brass	G. 3/4"	0.024 ÷ 0.097	86 ÷ 347	0.37 ÷ 1.53	ADPI20CLF050		
-	EN 12165-CW602N-M	-	-	r=	-	-		
-		-	-	-	-	-		

	ART20CHF - Pressure independent control valve - PN 25 - "CR" Brass - High Flow							
			Flow rate range					
DN	Material	Thread	(l/s)	(l/h)	(GPM)	Part code		
10	CR Brass EN 12165-CW602N-M	G. 1/2″	0.024 ÷ 0.097	86 ÷ 347	0.37 ÷ 1.53	ADPI20CHF038		
15		G. 3/4″	0.027 ÷ 0.134	96 ÷ 483	0.42 ÷ 2.13	ADPI20CHF050		
20		G. 1″	0.042 ÷ 0.250	150 ÷ 900	0.66 ÷ 3.96	ADPI20CHF075		
25		G. 1"1/4	0.076 ÷ 0.447	272 ÷ 1610	1.20 ÷ 7.09	ADPI20CHF100		

	ART 20U Union Tail Pieces for ART 20C DN10-25 (U=Union connection)					
DN	DN Item Description					
10	DN10 2 piece union + gasket	G 1/2" To pipe R3/8" BSPM (2 reqd per valve)	ADPI20CU038			
15	DN15 2 piece union + gasket	G 3/4" To pipe R1/2" BSPM (2 reqd per valve)	ADPI20CU050			
20	DN20 2 piece union + gasket	G 1" To pipe R3/4" BSPM (2 read per valve)	ADPI20CU075			
25	DN25 2 piece union + gasket	G 1 1/4" To pipe R1" BSPM (2 reqd per valve)	ADPI20CU100			

Actuators:

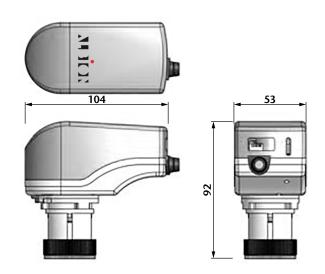
ART20C is designed to be upgraded with different type of actuators to open, close and modulate the valve on circuit.

<u>DN 15-25</u>

Different types of actuators are available, as follows:

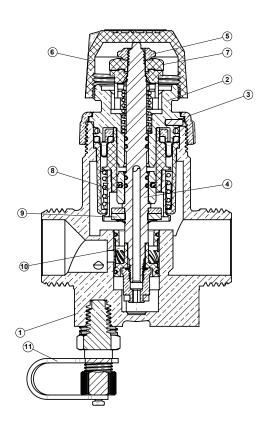
- Motorised Gear Actuators
 - C23E: operating voltage 24 V AC 0...10 V DC control signal;
 - C21V: operating voltage 24 V AC 3-position control signal;
 - C22V: operating voltage 230 V AC 3-position control signal;
- Thermoelectric Actuators:
 - EMV311/NC 24: operating voltage 24 V AC Normally closed;
 - EMV311/NV 230: operating voltage 230 V AC Normally closed;
 - EMV311/NO 24: operating voltage 24 V AC Normally open;
 - EMV311/NO 230: operating voltage 230 V AC Normally open;
 - EMV311/PRO: operating voltage 24 V AC Normally closed 0...10 V DC control signal;
- Thermostatic Head
 - EMV299/100: operating temperatures 20-60°C

ART20C Pressure Independant Control Valve (PICV)


Model	EMV311/NC 24	EMV311/NC 230	EMV311/NO 24	EMV311/NO 230	EMV311/PRO
Technical code	RC09600000	RC09680000	RC09690000	RC09700000	RC11010000
Voltage	24 V AC	230 V AC	24 V AC	230 V AC	24 V AC
Control	On/Off -N.C.	On/Off -N.C.	On/Off – N.O.	On/Off – N.O.	Proportional
					0-10 VDC
					N.C.
Frequency	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz
Power	2.5 W	2.5 W	2.5 W	2.5 W	2.5 W
Closing and	5 min	3 min	5 min	3 min	30 sec/mm
opening times					
Degree / Class	IP54/II	IP54/II	IP54/II	IP54/II	IP54/II
of protection					
Actuator stroke	4.5 mm	4.5 mm	4.5 mm	4.5 mm	4.5 mm
Actuating force	160 N	160 N	160 N	160 N	160 N
Cable length	1 m	1 m	lm	lm	lm
Connection	M30x1.5	M30x1.5	M30x1.5	M30x1.5	M30x1.5

EMV299/100 RC09610000 20-60°C 2 m M30x1.5

Model	
Technical code	
Temperature	
Sensor length	
Connection	


Dimensions are for C21V-23E only.

Page 4

ART20C Pressure Independant Control Valve (PICV)

Cross section:

- 1. Valve body
- 2. Bonnet
- 3. Fixing ring
- 4. Stem
- 5. Locking nut
- 6. Plastic cap
- 7. Dial
- 8. DPC controller
- 9. Gasket
- 10. Regulator
- 11. Binder

Installation procedure:

Before installation of ART20C, check that inside the valve and the pipes there are no foreign matters which might damage the tightness of the valve.

Make sure that required flow rate is within operating range of the valve. Valves may be installed either on horizontal or vertical pipelines with the electric actuator faced-up and following the arrow direction casted on the valve body, which shall be the same as the flow one.

For assembly purposes, use a spanner, not a pipe wrench, by applying necessary working torque.

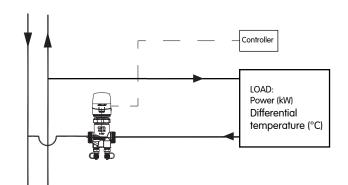
The valve is supplied with a cap allowing (when screwed) the manual closing of the valve.

ART20C Pressure Independant Control Valve (PICV)

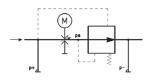
Balancing:

Typical installations:

Take the plastic cap screwed on the upper part of the valve off. Turn the presetting dial device (see picture) and match the mark on the swivel part with the value stated on the fixed part of said device (1, 2, 3, etc.), which shall correspond to required flow rate. Do not exceed the working setting range (1-5).


The relation between flow rate and values shown on the presetting dial device are given by the tables stated on following pages of this data sheet.

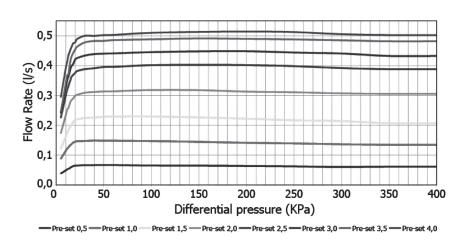
Using a differential manometer, check that the differential pressure is higher or


the same as the minimum value reported in said tables. The differential manometer interfaces with the balancing value through the two binder points of the value.

When balancing is achieved, screw the lock for presetting dial completely, preventing any unintentional rotation.

ART20C is suitable for variable volume system to control fan coil flow rate directly. Below a typical installation: in each moment the flow rate is the required one and there will be no extra-flow due to the pressure fluctuations.

Sizing:

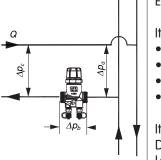

- Thanks to their unique design, these valves are able to perform the following functions:
 REGULATION: selection of required flow rate within the operating range;
- When electric actuator or plastic cap is missing, the valve is normally open. On the contrary, if plastic cap is screwed or electric actuator installed therein, they overcome the force of the spring and close the valve. The inlet water goes through a modulating control component whose geometry can be modified by turning the presetting dial, according to the required flow rate in the system branch where the valve is installed.
- CONTROL: constant flow rate despite of pressure fluctuations; Two different pressures operate on the DPC bonnet. The first one is transmitted through the passage connecting the valve inlet to the higher section of the valve (see hydraulic schematic); the second one is registered at valve outlet by the flow rate selecting device "pa". In order to keep constant the difference between the mentioned pressures, the DPC bonnet obturator operates by closing the water outlet bore to reach the preset flow rate, regardless of fluctuating pressure conditions of the system.
- MODULATION: "Full authority" flow rate modulation for room temperature control; The actuator performs the modulating function changing the section of flow passage. When continuous modulation is carried out, the temperature is kept under control. ART20C keeps the same obturator stroke, regardless of the presetting dial position. With continuous modulation, control is excellent even with small flow opening. This eliminates on/off effect.

Constant flow is obtained through the valve, despite pressure fluctuations. By simply measuring differential pressure across the valve, the flow through the cartridge is obtained as follows:

- If measured differential pressure is above △p_{min} (start-up pressure), the flow rate is the same as the one stated on the valve table (function) of the pre-set;
- If measured differential pressure is below minimum △p_{min} stated on valve table, flow rate is calculated with one of the following formula:

Q=Kvs ·		$\frac{\Delta p}{r}$
---------	--	----------------------

Q is the flow rate in m³/h, r is the relative density, Δp is the pressure drop across the valve; Kvs - Kv across the valve when it is fully open (see tables).



Relative density					
Fluid	r				
Water	1.000				
Water and glycol 10%	1.012				
Water and glycol 20%	1.028				
Water and glycol 30%	1.040				
Water and glycol 40%	1.054				
Water and glycol 50%	1.067				

Dimensions in mm

where:

ART20C Pressure Independant Control Valve (PICV)

 $\Delta p_a = \Delta p_b + \Delta p_c$

- Δp_b Pressure drop across ART20C
- Δp_c Circuit pressure drop
- Δp_a Available pressure for the riser

SUGGESTED VALUES AND TIPS:

• Velocities in the pipeline: Max = 1.15 m/s Min = 0.75 m/s

For the preliminary sizings where the value of maximum available pressure is not known, it is possible to use the maximum head of the pump directly.

EXAMPLE

It is required to balance the circuit in the figure, the given data are:

- Circuit pressure drop: $\Delta p_c = 10 \text{ kPa};$
- Flow rate: Q= 0.23 m³/h=0.064 l/s;
- Maximum head: $\Delta p_{a,max} = 60$ kPa (Pump head);
- Pipeline size:1/2"- DN15.

It is possible to install a valve with the same diameter of the pipe. Using a ART20C 3/4'' - DN15, it is possible to select from the attached tables the pre-set position (Set 2.4 - 0.0645 l/s).

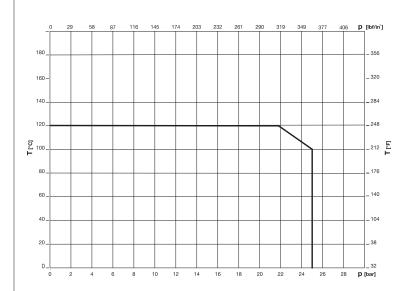
This P.I.C.V. in this conditions needs at least 14 kPa of differential pressure in order to work properly, the available pressure on the riser should be at least:

$\Delta p_a = \Delta p_b + \Delta p_c = 14 + 10 = 24 \ kPa$

The maximum allowable differential pressure across the balancing valve is 400 kPa, it means that the maximum head at the riser should be:

 $\Delta p_a = \Delta p_b + \Delta p_c = 410 + 10 = 410 \ kPa$

Being the maximum head less than the calculated limit, the installation is correct.

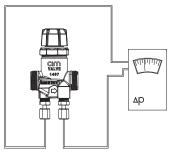

Measurement conversion chart:

Pressure		
FROM	MULTIPLY BY	TO OBTAIN
Pa, Pascal Pa, Pascal	0,001 0,000001	↓ kPa, kiloPascal MPa, Mega Pascal
Pa, Pascal Pa, Pascal Pa, Pascal	0,00001 0,00010972 0,000145038	bar m _{H20} , metres of water
bar bar	1,01325 0,980665	psi, pound per square inch atm, atmosphere Kg/cm², kilograms per square centimetre
bar bar	10,1972 14,5038	m _{H20} , metres of water psi, pound per square inch
atm, atmosphere atm, atmosphere atm, atmosphere	1,03323 10,3323 14,6959	Kg/cm², kilograms per square centimetre m _{H20} , metres of water psi, pound per square inch
Kg/cm ² Kg/cm ²	10	m _{H20} , metres of water psi, pound per square inch
m _{H20}	1,42233	psi, pound per square inch
TO OBTAIN	DIVIDE BY	FROM

Length, Area, Volume, Density

FROM	MULTIPLY BY	TO OBTAIN
inches	0,0254	m, metres
inches	2,54	cm, centimetres
feet	0,3048	m, metres
feet	30,48	cm, centimetres
yards	0,9144	m, metres
square inches	0,00064516	m², metri quadrati
square feet	0,09290304	m², square metres
square inches	6,4516	cm ² , square centimetres
square feet	929,0304	cm ² , square centimetres
square yards	0,8361274	m², square metres
I, litres	0,001	m ³ , cubic metres
gallons	0,003789412	m ³ , cubic metres
cubic yards	0,7645549	m ³ , cubic metres
cubic feet	0,02831685	m ³ , cubic metres
cubic inches	0,0000164	m ³ , cubic metres
cubic inches	16,38706	cm 3, cubic centimetres
cubic feet	28,31685	l, litres
gallons	3,875412	l, litres
^		
TO OBTAIN	DIVIDE BY	FROM

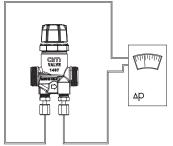
Pressure-temperature ratings:



Page 9

Flow rates - 1/2" DN 10

ART20C LF

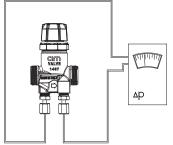


 $\begin{array}{l} \Delta p \geq \Delta p_{min} \text{ --> } Q = Q_{nom} \\ \Delta p < \Delta p_{min} \text{ --> } Q = Kvs \; \sqrt{\Delta p} \end{array}$

Pre	-Set	1.0	1.2	1.4	1.6	1.8	2.0
	l/h	43	47	55	63	72	79
Flow Rate	l/s	0.012	0.013	0.015	0.018	0.020	0.022
Nulle	GPM	0.19	0.21	0.24	0.28	0.32	0.35
Min Δ	p kPa	15	15	15	15	15	15
K	vs	0.11	0.12	0.14	0.16	0.18	0.20
Pre	-Set	2.0	2.2	2.4	2.6	2.8	3.0
	l/h	79	85	90	93	96	99
Flow Rate	l/s	0.022	0.024	0.025	0.026	0.027	0.027
Nuic	GPM	0.35	0.37	0.40	0.41	0.42	0.43
Min Δ	p kPa	15	15	15	15	15	16
K	vs	0.20	0.22	0.23	0.24	0.24	0.25
Pre	-Set	3.0	3.2	3.4	3.6	3.8	4.0
	l/h	99	101	104	108	113	119
Flow Rate	l/s	0.027	0.028	0.029	0.030	0.031	0.033
	GPM		1		1	i -	
	OPM	0.43	0.45	0.46	0.48	0.50	0.52
Min 🛆	p kPa	0.43	0.45	0.46 16	0.48 16	0.50 16	0.52 16
	-						
ĸ	p kPa	16	16	16	16	16	16
ĸ	p kPa vs	16 0.25	16 0.25	16 0.26	16 0.27	16 0.28	16 0.30
K Pre- Flow	p kPa vs -Set	16 0.25 4.0	16 0.25 4.2	16 0.26 4.4	16 0.27 4.6	16 0.28 4.8	16 0.30 5.0
K Pre	p kPa vs -Set I/h	16 0.25 4.0 119	16 0.25 4.2 126	16 0.26 4.4 133	16 0.27 4.6 140	16 0.28 4.8 146	16 0.30 5.0 150
K Pre Flow Rate	p kPa vs -Set I/h I/s	16 0.25 4.0 119 0.033	16 0.25 4.2 126 0.035	16 0.26 4.4 133 0.037	16 0.27 4.6 140 0.039	16 0.28 4.8 146 0.040	16 0.30 5.0 150 0.042
K Pre- Flow Rate Min ∆	p kPa vs -Set 1/h 1/s GPM	16 0.25 4.0 119 0.033 0.52	16 0.25 4.2 126 0.035 0.55	16 0.26 4.4 133 0.037 0.59	16 0.27 4.6 140 0.039 0.62	16 0.28 4.8 146 0.040 0.64	16 0.30 5.0 150 0.042 0.66

Flow rates - 1/2" DN10

ART20C HF

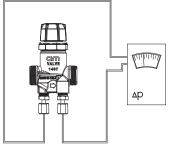

 $\begin{array}{l} \Delta p \geq \Delta p_{min} \text{ --> } Q = Q_{nom} \\ \Delta p < \Delta p_{min} \text{ --> } Q = Kvs \sqrt{\Delta p} \end{array}$

Pre	-Set	1.0	1.2	1.4	1.6	1.8	2.0
	l/h	86	102	122	143	172	194
Flow Rate	l/s	0.024	0.028	0.034	0.040	0.048	0.054
	GPM	0.38	0.45	0.54	0.63	0.76	0.85
Min 🛆	p kPa	13	13	13.5	13.5	14	14
ĸ	vs	0.24	0.28	0.33	0.39	0.46	0.52
Pre	-Set	2.0	2.2	2.4	2.6	2.8	3.0
	l/h	194	217	232	238	254	259
Flow Rate	l/s	0.054	0.060	0.064	0.066	0.071	0.072
	GPM	0.85	0.96	1.02	1.05	1.12	1.14
Min 🛆	p kPa	14	14	14	14.5	14.5	14.5
Kvs		0.52	0.58	0.62	0.62	0.67	0.68
Pre	-Set	3.0	3.2	3.4	3.6	3.8	4.0
	l/h	259	266	280	281	288	294
Flow Rate	l/s	0.072	0.074	0.078	0.078	0.080	0.082
	GPM	1.14	1.17	1.23	1.24	1.27	1.29
Min 🛆	p kPa	14.5	14.5	15	15	15	15
ĸ	vs	0.68	0.70	0.72	0.73	0.74	0.76
Pre	-Set	4.0	4.2	4.4	4.6	4.8	5.0
	l/h	294	298	300	304	314	347
Flow Rate	l/s	0.082	0.083	0.083	0.084	0.087	0.097
	GPM	1.29	1.31	1.32	1.34	1.38	1.53
Min Δ	p kPa	15	15.5	15.5	15.5	16	16.5
						1	1

ART20C Pressure Independant Control Valve (PICV)

Flow rates - 3/4" DN 15

ART20C LF

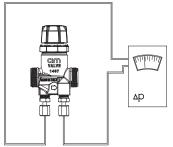

 $\begin{array}{l} \Delta p \geq \Delta p_{min} \text{ --> } Q = Q_{nom} \\ \Delta p < \Delta p_{min} \text{ --> } Q = Kvs \sqrt{\Delta p} \end{array}$

Pre	-Set	1.0	1.2	1.4	1.6	1.8	2.0
	l/h	86	102	122	143	172	194
Flow Rate	l/s	0.024	0.028	0.034	0.040	0.048	0.054
	GPM	0.38	0.45	0.54	0.63	0.76	0.85
Min 🛆	p kPa	13	13	13.5	13.5	14	14
ĸ	vs	0.24	0.28	0.33	0.39	0.46	0.52
Pre	-Set	2.0	2.2	2.4	2.6	2.8	3.0
	l/h	194	217	232	238	254	259
Flow Rate	l/s	0.054	0.060	0.064	0.066	0.071	0.072
	GPM	0.85	0.96	1.02	1.05	1.12	1.14
Min ∆p kPa		14	14	14	14.5	14.5	14.5
Kvs		0.52	0.58	0.62	0.62	0.67	0.68
Pre-Set		3.0	3.2	3.4	3.6	3.8	4.0
	l/h	259	266	280	281	288	294
Flow Rate	l/s	0.072	0.074	0.078	0.078	0.080	0.082
	GPM	1.14	1.17	1.23	1.24	1.27	1.29
Min 🛆	p kPa	14.5	14.5	15	15	15	15
ĸ	vs	0.68	0.70	0.72	0.73	0.74	0.76
Pre-Set		4.0	4.2	4.4	4.6	4.8	5.0
Flow Rate	l/h	294	298	300	304	314	347
	l/s	0.082	0.083	0.083	0.084	0.087	0.097
	GPM	1.29	1.31	1.32	1.34	1.38	1.53
Min Δ	p kPa	15	15.5	15.5	15.5	16	16.5
Kvs		0.76	0.76	0.76	0.77	0.78	0.86

ART20C Pressure Independant Control Valve (PICV)

Flow rates - 3/4" DN15

ART20C HF

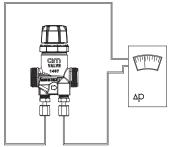


 $\begin{array}{l} \Delta p \geq \Delta p_{min} \text{ --> } Q = Q_{nom} \\ \Delta p < \Delta p_{min} \text{ --> } Q = Kvs \sqrt{\Delta p} \end{array}$

Pre	-Set	1.0	1.2	1.4	1.6	1.8	2.0
	l/h	96	112	135	155	179	192
Flow Rate	l/s	0.027	0.031	0.037	0.043	0.050	0.053
	GPM	0.42	0.49	0.59	0.68	0.79	0.85
Min 🛆	p kPa	12.5	12.5	12.5	13	13	13
ĸ	vs	0.27	0.32	0.38	0.43	0.50	0.53
Pre	-Set	2.0	2.2	2.4	2.6	2.8	3.0
	l/h	192	210	234	235	260	261
Flow Rate	l/s	0.053	0.058	0.065	0.065	0.072	0.072
	GPM	0.85	0.92	1.03	1.03	1.14	1.15
Min Δ	p kPa	13	13	13.5	13.5	14	14
Kvs		0.53	0.58	0.64	0.64	0.69	0.70
Pre-Set		3.0	3.2	3.4	3.6	3.8	4.0
	l/h	261	262	271	284	318	343
Flow Rate	l/s	0.072	0.073	0.075	0.079	0.088	0.095
	GPM	1.15	1.15	1.19	1.25	1.40	1.51
Min 🛆	p kPa	14	14	15	16	17	17.5
ĸ	vs	0.70	0.70	0.70	0.71	0.77	0.82
Pre	-Set	4.0	4.2	4.4	4.6	4.8	5.0
Flow Rate	l/h	343	409	440	456	476	483
	l/s	0.095	0.114	0.122	0.127	0.132	0.134
	GPM	1.51	1.80	1.94	2.01	2.10	2.13
Min ∆p kPa		17.5	18	18.5	19	19.5	19.5
Min Δ	•						

Flow rates - 1" DN20

ART20C HF

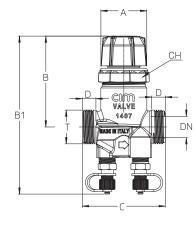


 $\begin{array}{l} \Delta p \geq \Delta p_{min} \text{ --> } Q = Q_{nom} \\ \Delta p < \Delta p_{min} \text{ --> } Q = Kvs \sqrt{\Delta p} \end{array}$

Pre	-Set	1.0	1.2	1.4	1.6	1.8	2.0
	l/h	150	200	244	259	273	315
Flow Rate	l/s	0.042	0.056	0.068	0.072	0.076	0.088
	GPM	0.66	0.88	1.07	1.14	1.20	1.39
Min Δ	p kPa	18	18	18.5	18.5	19	19
K	vs	0.35	0.47	0.57	0.60	0.63	0.72
Pre	-Set	2.0	2.2	2.4	2.6	2.8	3.0
	l/h	315	350	370	380	390	425
Flow Rate	l/s	0.088	0.097	0.103	0.106	0.108	0.118
	GPM	1.39	1.54	1.63	1.67	1.72	1.87
Min ∆p kPa		19	19	19	19	19	19
Kvs		0.72	0.80	0.85	0.87	0.89	0.98
Pre-Set		3.0	3.2	3.4	3.6	3.8	4.0
	l/h	425	456	475	502	545	590
Flow Rate	l/s	0.118	0.127	0.132	0.139	0.151	0.164
Naio	GPM	1.87	2.01	2.09	2.21	2.40	2.62
Min Δ	p kPa	19	20	20	21	21	23
K	vs	0.98	1.02	1.06	1.10	1.19	1.23
Pre-Set		4.0	4.2	4.4	4.6	4.8	5.0
Flow Rate	l/h	590	610	690	812	885	900
	l/s	0.164	0.169	0.192	0.226	0.246	0.250
	GPM	2.62	2.69	3.04	3.58	3.90	3.96
Min Δ	p kPa	23	23	24	25	26	26
Kvs		1.23	1.27	1.41	1.62	1.74	1.77

Flow rates - 1"1/4 DN25

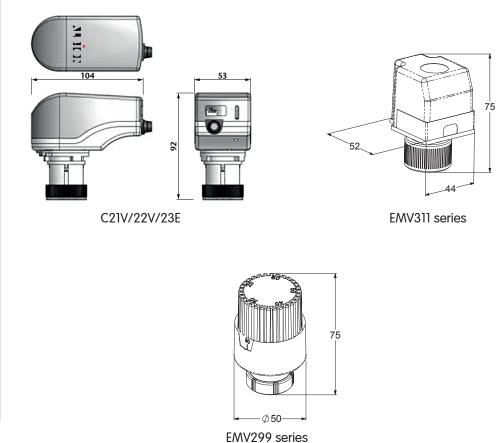
ART20C HF


 $\begin{array}{l} \Delta p \geq \Delta p_{min} \text{ --> } Q = Q_{nom} \\ \Delta p < \Delta p_{min} \text{ --> } Q = Kvs \sqrt{\Delta p} \end{array}$

Pre	-Set	1.0	1.2	1.4	1.6	1.8	2.0
	l/h	272	352	400	428	490	592
Flow Rate	l/s	0.076	0.098	0.111	0.119	0.136	0.164
	GPM	1.20	1.55	1.76	1.88	2.16	2.61
Min 🛆	p kPa	18	18	19	19	20	20
ĸ	vs	0.64	0.83	0.92	0.98	1.10	1.32
Pre	-Set	2.0	2.2	2.4	2.6	2.8	3.0
	l/h	592	645	700	740	770	882
Flow Rate	l/s	0.164	0.179	0.194	0.206	0.214	0.245
	GPM	2.61	2.84	3.08	3.26	3.39	3.88
Min Δ	p kPa	20	21	22	23	24	25
Kvs		1.32	1.41	1.49	1.54	1.57	1.76
Pre-Set		3.0	3.2	3.4	3.6	3.8	4.0
	l/h	882	920	950	1046	1160	1200
Flow Rate	l/s	0.245	0.256	0.264	0.291	0.322	0.333
	GPM	3.88	4.05	4.18	4.61	5.11	5.28
Min Δ	p kPa	25	25	26	26	27	27
ĸ	vs	1.76	1.84	1.86	2.05	2.23	2.31
Pre-Set		4.0	4.2	4.4	4.6	4.8	5.0
	l/h	1200	1260	1345	1400	1540	1610
Flow Rate	l/s	0.333	0.350	0.374	0.389	0.428	0.447
	GPM	5.28	5.55	5.92	6.16	6.78	7.09
Min ∆p kPa		27	28	31	32	35	37

ART20C Pressure Independant Control Valve (PICV)

Main dimensions:


ART20C LF ART20C HF

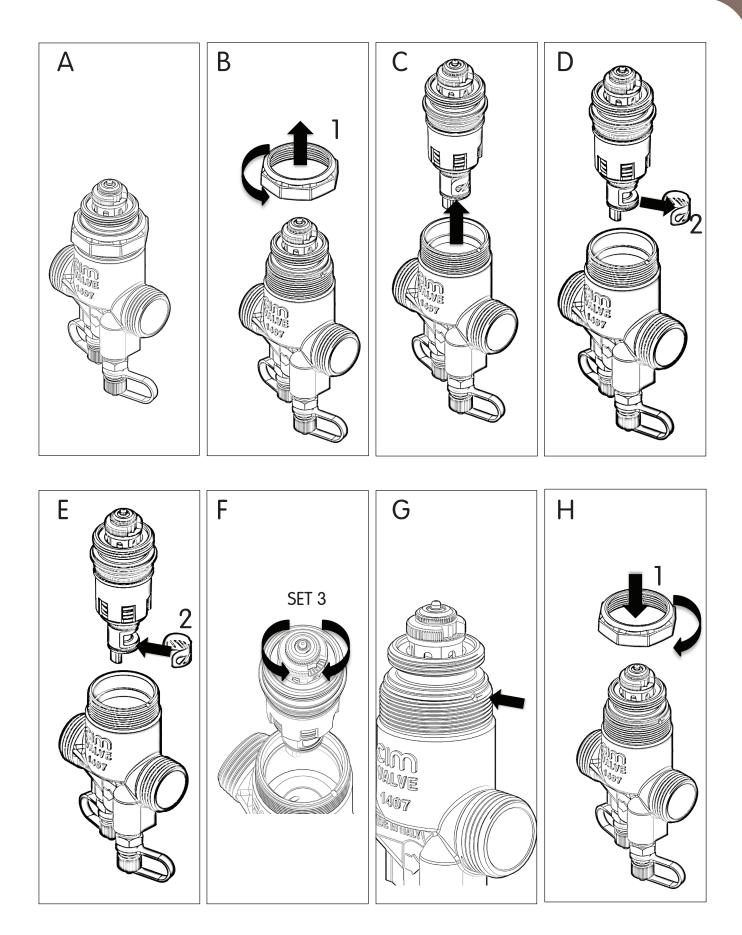
DN	10	15	20	25
Grms.	450	490	790	960
А	35	35	35	35
В	75	75	85	83
B1	130	130	150	146
С	53	65	82	104
D	9	11	12	13
Т	G. 1/2″	G. 3/4″	G. 1″	G. 1″1/4
CH	39	39	39	39
	Grms. A B B1 C D T	Grms. 450 A 35 B 75 B1 130 C 53 D 9 T G. 1/2"	Grms. 450 490 A 35 35 B 75 75 B1 130 130 C 53 65 D 9 11 T G. 1/2" G. 3/4"	Grms. 450 490 790 A 35 35 35 B 75 75 85 B1 130 130 150 C 53 65 82 D 9 11 12 T G. 1/2" G. 3/4" G. 1"

Main dimensions:

C23E C21V C22V EMV299/100 EMV311/NC EMV311/NO EMV311/PRO

Page 16

ART20C Pressure Independant Control Valve (PICV)


Maintenance:

As a rule, the balancing valve does not need any maintenance. In case of replacement or need of disassembling of some components of the valve, make sure that the installation is not under service or pressure.

- Instructions for disassembling and assembling of the bonnet:
- Disassembling:
- Unscrew the locking nut (1) (B), pull the bonnet out (C), and take the band (2) away (D); • Assembling:
- Replace the band (2) in the seat (E) and guide the regulator into the position No.3 (F), insert the bonnet into the body paying attention to couple the pin of the bonnet with the cavity placed in the upper part of the body (G). Screw the nut with operating torque of 15 Nm (H). Adjust the required flow rate and screw the locking nut.

ART20C Pressure Independant Control Valve (PICV)

9a Fallbank Industrial Estate, Dodworth, Barnsley, S75 3LS

Certificate No. 1437B

Certificate No. 1437A

Distributor