Variable Orifice Double Regulating Valve

Flow Data and Installation Instructions

This datasheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.
The Albion ART 250 is a variable orifice double regulating valve used to regulate and measure the flow passing through it.

Flow Coefficient

The flow rate can be calculated using the K_v value and a measured signal.

$$K_v = \frac{Q \times 36}{\sqrt{\Delta P}}$$

$$K_{vs} = \frac{Q \times 36}{\sqrt{\Delta P_s}}$$

where K_v & K_{vs} = flow coefficient (m3/hr at 1 bar differential)

Q = flow rate (l/s)

ΔP = headloss attributable to valve (kPa)

ΔP_s = differential pressure across tappings (signal) (kPa)

K_{vs} Values

The K_{vs} values are given on each flow chart at various positions from 25% to fully open.

Pressure Loss and K_v Value

The pressure loss across a variable orifice double regulating valve is the same as the differential pressure (signal) measured across the body seat.

The K_v value is therefore the same as the K_{vs} value used to calculate flow rate.

Installation

Variable orifice double regulating valves must always be installed with a minimum of 5 pipe diameters of straight pipe, without intrusion, upstream of the valve and a minimum of 2 pipe diameters downstream.
Technical Data

Sizing

Once the required flow rate has been calculated, the size of the variable orifice double regulating valve can be determined based on the following:

With the valve fully open, a minimum signal at the design flow rate of 1 kPa. The maximum signal is normally less than 5 kPa but can be up to 10 kPa.

For sizing the flow velocity should not exceed 3 m/s at the design flow rate.

Pressure Equipment Directive

Under the Pressure Equipment Directive (PED) these variable orifice double regulating valves have been specified for Group 2 Liquids i.e. non-hazardous.

Sizes DN50 to DN80 are classified as SEP (Sound Engineering Practice)
Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice

\[Q = \frac{K_{vs} \sqrt{\Delta p}}{36} \]

Where

- \(Q \) = Flowrate \(l/s \)
- \(\Delta p \) = Signal \(kPa \)
- \(K_{vs} \) = Signal Co-efficient

Position

<table>
<thead>
<tr>
<th>Position</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{vs})</td>
<td>10.2</td>
<td>15.2</td>
<td>21.9</td>
<td>29.7</td>
<td>38.9</td>
<td>44.7</td>
<td>48.2</td>
</tr>
</tbody>
</table>

This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.
Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice

\[Q = \frac{K_{vs} \sqrt{\Delta p}}{36} \]

Where

- \(Q \) = Flowrate, l/s
- \(\Delta p \) = Signal, kPa
- \(K_{vs} \) = Signal Co-efficient

Position	2	3	4	5	6	7	8
\(K_{vs} \) | 20.6 | 30.9 | 44.0 | 58.3 | 70.3 | 77.8 | 82.6 |
DN80 ART 250 Variable Orifice Double Regulating Valve

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice

\[Q = \frac{K_{vs} \sqrt{\Delta p}}{36} \]

Where

- \(Q \) = Flowrate \(l/s \)
- \(\Delta p \) = Signal \(kPa \)
- \(K_{vs} \) = Signal Co-efficient

<table>
<thead>
<tr>
<th>Position</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{vs})</td>
<td>20.9</td>
<td>35.4</td>
<td>52.1</td>
<td>73.7</td>
<td>92.1</td>
<td>105.6</td>
<td>117.4</td>
</tr>
</tbody>
</table>

Issue 1

This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.
This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.
This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.

Signal / Flowrate
Chart used to determine flowrate from signal measured across orifice

\[Q = \frac{K_{vs} \sqrt{\Delta p}}{36} \]

Where
\[Q = \text{Flowrate} \quad \text{l/s} \]
\[\Delta p = \text{Signal} \quad \text{kPa} \]
\[K_{vs} = \text{Signal Co-efficient} \]
DN150 ART 250 Variable Orifice Double Regulating Valve

$Q = K_{vs} \sqrt{\Delta p}$

Where

Q = Flowrate l/s

Δp = Signal kPa

K_{vs} = Signal Co-efficient

Signal / Flowrate
Chart used to determine flowrate from signal measured across orifice

<table>
<thead>
<tr>
<th>Position</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{vs}</td>
<td>125.1</td>
<td>183.3</td>
<td>254.9</td>
<td>320.5</td>
<td>369.2</td>
<td>418.0</td>
<td>462.4</td>
</tr>
</tbody>
</table>

This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.
Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice

\[Q = \frac{K_{vs} \sqrt{\Delta p}}{36} \]

Where

- \(Q \) = Flowrate \(l/s \)
- \(\Delta p \) = Signal \(kPa \)
- \(K_{vs} \) = Signal Co-efficient

Position

<table>
<thead>
<tr>
<th>Position</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{vs})</td>
<td>268.1</td>
<td>335.3</td>
<td>399.2</td>
<td>463</td>
<td>540</td>
<td>625</td>
<td>683</td>
<td>720</td>
<td>790</td>
</tr>
</tbody>
</table>

This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.
DN250 ART 250 Variable Orifice Double Regulating Valve

Signal / Flowrate
Chart used to determine flowrate from signal measured across orifice

\[Q = \frac{K_{vs} \sqrt{\Delta p}}{36} \]

Where:
- \(Q \) = Flowrate \(\text{l/s} \)
- \(\Delta p \) = Signal \(\text{kPa} \)
- \(K_{vs} \) = Signal Co-efficient

<table>
<thead>
<tr>
<th>Position</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{vs})</td>
<td>183</td>
<td>250</td>
<td>324</td>
<td>415</td>
<td>518</td>
<td>630</td>
<td>756</td>
<td>894</td>
<td>1013</td>
<td>1135</td>
</tr>
</tbody>
</table>

This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.
DN300 ART 250 Variable Orifice Double Regulating Valve

Signal / Flowrate Chart used to determine flowrate from signal measured across orifice

\[Q = \frac{K_{vs} \sqrt{\Delta p}}{36} \]

Where
- \(Q \) = Flowrate \(\text{l/s} \)
- \(\Delta p \) = Signal \(\text{kPa} \)
- \(K_{vs} \) = Signal Co-efficient

Position

<table>
<thead>
<tr>
<th>Position</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{vs})</td>
<td>462</td>
<td>633</td>
<td>830</td>
<td>1025</td>
<td>1215</td>
<td>1393</td>
<td>1575</td>
<td>1730</td>
<td>1850</td>
<td>2022</td>
</tr>
</tbody>
</table>

Issue 1

This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.