

Technical Data and Installation Instructions

Page 1

The modulating valves ART 241 balance and control the differential pressure (DPCV) automatically and proportionally.

The valve balances the flow in the main network or in the single risers and branches of a heating/conditioning system, controls and keeps the differential pressure over the load at a stable value, reducing the risk of noisiness and wear of the thermostatic control valves. Moreover, correcting the imbalances of the supply between the user units assures a better environmental comfort together with an optimization of the energy consumption.

The regulation range of the differential pressure delivered is comprised between 0.2 - 0.8 and 0.8 - 1.6 bar for DN65-100 and between 0.2 and 0.8 bar for DN125-150.

The valves perform shut-off and measuring functions.

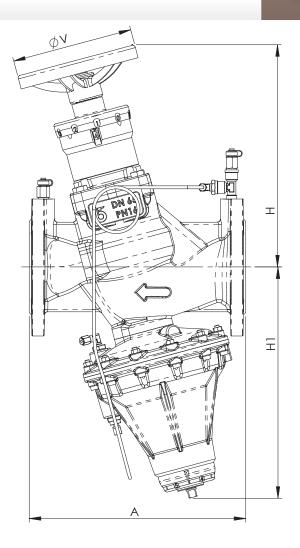
Advantages: reduces purchasing costs, and installation and set-up times.

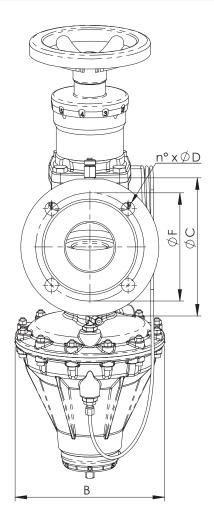
No need for an external energy supply.

- Internal and external epoxy coating, high temperature resistance, environmentally-friendly water-based paint.
- 2. Self-sealing test points for quick connection pressure or temperature probes.
- 3. The large diameter membrane allows accurate measuring of the pressure
- Differential pressure regulation screws.
 The associated position indicator allows easy setting of the differential pressure
- Position indicator may be adjusted to 4 positions for easy reading.
- 6. The shutter with EPDM seal produces a perfect seal, when maintenance work is done on the system.
- 7. Safety pressure relief by-pass: limits the allowable differential pressure value across the membrane and prevents the risk of damages and breakage.

Accessories

- Electronic instrument for measuring the differential pressure, flow rate and balancing of the circuit
- Pressure gauge probe adaptor
- Fitting, adapter, compression fitting, copper capillary pipe, test plug.


(In conformity with directive 97/23/CE PED


Construction and testing norms (correspondences):

Face-to-face: EN 558-1 Flanges: EN 1092, Design: EN13445 Marking: EN19

Testing: 100% testing according to EN 12266

Materials

	Component	Material
1	Body	EN GJL250
2	Bonnet	EN GJL250
3	Spring housing	Aluminium
4	Stems	CuZn40Pb2
5	Seat seal	EPDM
6	Membrane	EPDM reinforced
7	Spring	AISI 302
8	O Ring	EPDM
9	Handwheel	Carbon steel, epoxy coated

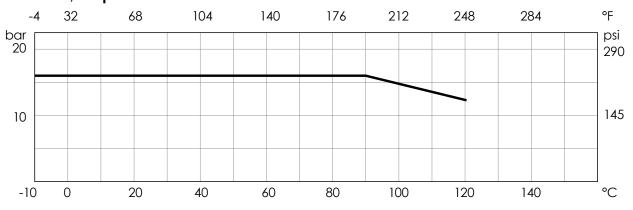
Dimensions (mm)

DN		65	80	100	125	150
Α	EN 558-1/1	290	310	350	400	480
Н		305	316	326	367	381
H1		310	400	414	436	460
В		200	242	242	242	242
V		200	200	200	200	200
С		185	200	220	250	285
F	EN1092 PN16	145	160	180	210	240
n x D		4 x 18	8 x 18	8 x 18	8 x 18	8 x 22

Weight (kg)

110.311 (kg)							
kg		24,2	30,6	36,1	51	80	

Maximum pressure


Fluids	
Water, water-glycol mix (MAX 50% glycol)	16 bar

Temperature

Temperature	min °C	Max °C
	-10	120

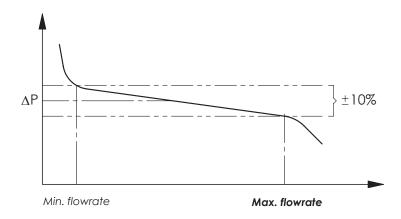
NB: the maximum working pressure decreases while temperature increases, please refer to "pressure/temperature" chart

Pressure/temperature chart

Kv chart (m3/h per 1 bar)

Position	Κv				
	DN 65	DN 80	DN 100	DN 125	DN 150
0,0	0,0	0,0	0,0	0	0,0
0,5	0,9	4,7	6,3	1,6	1,9
1,0	2,4	7,4	8,8	3,1	3,7
1,5	3,4	10,0	12,1	4,5	5,0
2,0	5,3	12,5	17,7	5,7	5,9
2,5	7,4	14,9	22,8	6,6	7,6
3,0	10,0	20,8	27,0	7,3	9,8
3,5	13,5	27,8	32,4	7,7	14,4
4,0	16,0	34,1	42,8	8,4	20,6
4,5	18,4	40,7	52,2	9,8	28,8
5,0	23,2	46,3	58,5	12,6	38,3
5,5	28,7	50,6	63,6	18,8	48,2
6,0	32,5	54,3	68,7	30,6	58,3
6,5	36,4	57,8	74,7	41,0	69,8
7,0	40,8	61,4	79,9	49,0	82,1
7,5	42,8	64,9	83,6	55,8	94,4
8,0	44,1	66,7	87,1	63,0	106,7
8,5	46,2	67,7	90,6	72,2	119,2
9,0	47,6	68,4	94,1	83,0	131,9
9,5	-	68,9	97,3	93,1	143,4
10,0	-	69,3	99,7	103,0	154,1
10,5	-	69,7	101,5	112,6	161,6
11,0	-	70,0	102,8	119,5	166,9
11,5	-	-	103,8	123,9	170,3
12,0	-	-	104,4	127,0	172,5
12,5	-	-	104,9	129,3	174,8
13,0	-	-	105,3	131,5	177,0
13,5	-	-	105,4	133,9	184,5
14,0	-	-	105,5	136,0	182,1
14,5	-	-	-	137,5	187,4
15,0	-	-	-	138,5	190,0
15,5	-	-	-	139,0	190,2
16,0	-	-	-	139,0	190,5
17,0	-	-	-	-	190,8
18,0	-	-	-	-	191,0
19,0	-	-	-	-	191,0

Working range


Refer also to "Instructions and Recommendations": Regulation of the differential pressure

				ı	Differential pressure ΔP (mbar)						
CODE	DN	200	300	400	500	600	800	1000	1200	1400	1600
						Flow rate	l/s				
ADTO44L DEE	GE.	0,277	0,277	0,416	0,416	0,416	0,416				
ART241LP65	65	11,111	16,666	18,055	18,055	20,833	20,833				
ART241HP65	65						0,555	0,555	0,555	0,833	0,833
AN124111F05	05						20,833	20,833	20,833	20,833	20,833
ART241LP80	80	0,333	0,416	0,416	0,416	0,416	0,416				
AN1241LF00	80	16,666	19,444	23,611	23,611	23,611	23,611				
ART241HP80	80						0,833	0,833	0,833	0,833	1,111
AN1241HF00	80						27,777	27,777	27,777	27,777	27,777
ART241LP100	100	0,416	0,555	0,555	0,555	0,555	0,833				
AN1241LF100	100	27,777	33,333	33,333	33,333	33,333	33,333				
ART241HP100	100						0,833	0,833	0,833	1,111	1,111
AN1241HF100	100						38,888	38,888	38,888	41,666	41,666
ART241LP125	125	0,833	1,111	1,111	1,111	1,388	1,388				
AN1241LF125	125	30,555	38,888	38,888	41,666	47,222	47,222				
ADTO441 D450	450	1,111	1,388	1,388	1,388	1,388	1,944				
ART241LP150	150	33,333	44,444	44,444	55,555	63,888	63,888				

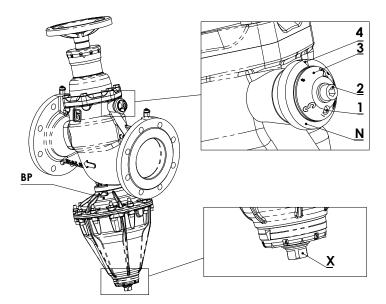
ATTENTION:

Minimum flow rate: indicated in italics

Maximum flow rate: indicated in italics, bold type

Regulation of the differential pressure

A) To regulate the differential pressure, turn the command screw (X): turn clockwise to increase the differential pressure, and to stabilize it up to the required value, as indicated in the working range chart. Refer to the digital position indicator as shown in the table below to set the required differential pressure value.


B) WARNING: for valves DN125 and DN150, to assure the correct operation, the regulation needle (N) shall be adjusted to match the value set for the position

indicator of the command screw (X).

- Loosen the socket head screw (1)
- By acting on the screw (2) turn the indicator (3), until the required value is read in correspondence of notch (4)
- Tighten socket head screw (1) to lock the position.

<u>Note:</u> the position indicator/differential pressure table is given to ease the set-up and cannot substitute a direct pressure measurement.

				Differ	ential press	sure ΔP (mb	ar)				
CODE	DN	200	300	400	500	600	800	1000	1200	1400	1600
				F	Position ind	icator					
ART241LP65	65	0	1	1.5	2	2.3	2.8				
ART241HP65	65						0	0.5	1	1.5	2
ART241LP80	80	0	0.5	0.8	1.2	1.7	3				
ART241HP80	80						0	1	1.7	2.2	2.5
ART241LP100	100	0	1	1.5	2	2.7	3.5				
ART241HP100	100						0	1	2	2.3	2.5
ART241LP125	125	0	0.5	1	1.5	2	3				
ART241LP150	150	0	0.5	1	1.5	2	3				

<u>IMPORTANT</u>: If the differential pressure acting on the membrane is too high, it can lead to damage the membrane itself or other components and thus compromising the valve functionality.

ART 241 is equipped with a safety pressure relief by-pass (BP, see the picture above) that limits the allowable differential pressure value across the membrane and prevents the risk of damages and breakage,

We recommend anyway to check the correctness of capillary pipes connection as well as the correctness of plant set-up (e.g. the correct position open/close of isolation valves) before plant start-up.

Versions

Modulating differential pressure control valve

ART 241 LP

Body: EN GJL 250 Seal: EPDM Temp: -10 +120°C

Controllable differential pressure range: 0,2 - 0,8 bar

ART 241 HP (DN 65÷100)

Body: EN GJL 250 Seal: EPDM Temp: -10 +120°C Controllable differential pressure range: 0,8 - 1,6 bar

Coating: RAL 5002 colour

Project data to be supplied while ordering

- Nominal flow
- Differential pressure of the user unit ΔP

Attention: In order to grant that valve works properly, it is important to assure that the differential pressure ΔH user unit connection to the riser (upstream of the valve) has at least the double value of the differential pressure ΔP across the user unit $(\Delta H > 2.5 \times \Delta P)$

Accessories

Complete kit

Tee 1/4MFF fitting, 1/4M-1/8F adapter, compression fitting 1/8M, copper capillary pipe diam. 4mm 2m length, 1/4M test plug.

Fitting and capillary kit

Compression fitting 1/8M, copper capillary pipe diam. 4mm 2m length.

Fittings, adapter and test plug kit

Tee 1/4MFF fitting, 1/4M-1/8F adapter, compression fitting 1/8M, 1/4M test plug.

Test plug

1/4M test plug.

Instrument for measurement

Electronic instrument for the measurement of the differential pressure, the flow rate and the balancing of the circuit.

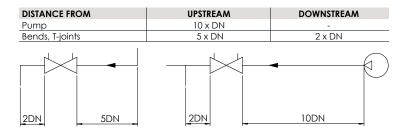
Adaptor

Pressure gauge probe adaptor. 1/4" F brass body and stainless steel probe.

Page 7

Instructions and Recommendations

The information provided here is delivered with each product, and contains "Instructions for use and maintenance".


RECOMMENDATIONS

Before carrying out maintenance or dismantling the valve: ensure that the pipes, valves and fluids have cooled down, that the pressure has decreased and that the lines and pipes have been drained in case of toxic, corrosive, inflammable and caustic liquids. Temperatures above 50°C and below 0°C might cause damage to people.

Commissioning, decommissioning and maintenance interventions must be carried out by trained staff, taking account of instructions and local safety regulations.

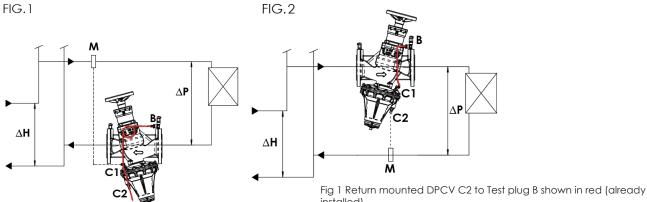
ADVICE FOR PLANT LAYOUT

- In order to ensure that temperature and pressure limits are not exceeded, the system should be fitted with a thermostat and pressure switches.
- Observe the following minimum distances between the valve and other system components.

- The capillary pipe connection is shown in fig. 2.
- In order to ensure that valve works properly, it is important to ensure that the differential pressure ΔH user unit connection to the riser (upstream of the valve) has at least twice value of the differential pressure ΔP across the user unit $(\Delta H > 2.5 \times \Delta P)$, see fig. 1.

The differential pressure ΔH should not exceed 4 bar, if cavitation is to be avoided.

INSTALLATION AND CONNECTIONS (FIG. 1-2).


installation and connections with DPCV mounted in the return pipework (Fig 1)

- connect to the flow pipe by means of a capillary tube (supplied separately) between positions M & C1.

installation and connections with DPCV mounted in the flow pipework (Fig 2)

-connect to the return pipe by means of a capillary tube (supplied separately) between positions M & C2.

NOTE: in case of normal operation the handle must be completely open.

installed)

Fig 2 Flow mounted DPCV C1 to B shown in red (already installed)

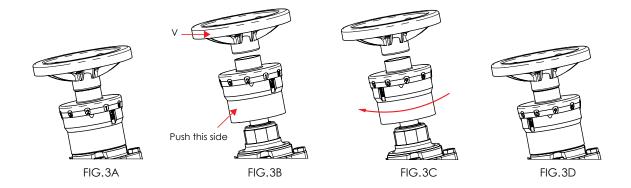
ABOUT CAVITATION

NB: the flow must be free of cavitation.

As the liquid flows through the valve, as a result of section reduction, its velocity, and its dynamic pressure, increase, and the corresponding static pressure decreases.

If the static pressure value drops below the vapour pressure level, steam bubbles will form. These bubbles will be carried away by the fluid, and implode when the static pressure exceeds the vapour pressure again. Bubble implosion generates high temperatures and pressure shock waves locally, which will damage the valve and cause vibrations and noise. Higher temperatures, lower static pressure and higher pressure drops across the valve usually increase the risk of cavitation.

STORING


- Keep the valve in a dry place, protect from damage and dirt.
- Handle with care, avoid knocks, especially on the weaker parts (hand wheel).
- Do not lift the valve by the hand wheel.
- Use suitable, sturdy packing for transport.

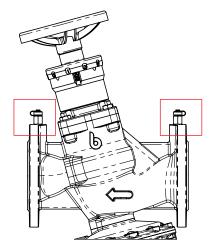
INSTALLATION

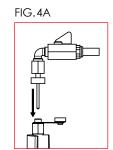
- Do not lift the valve by the hand wheel.
- Before installation, check that:
 - The piping is clean
 - The valve is clean and undamaged
 - The flange sealing surfaces are clean and undamaged
- The valve is unidirectional. Respect the flow direction indicated by the arrow on the body.
- Use suitable gaskets and check that they are correctly centred.
- Do not weld the flanges to the piping after installing the valve.
- Water hammers might cause damage and ruptures. Avoid inclination, twisting and misalignments of the piping which may subject the installed valve to excessive stresses. It is recommended that elastic joints be used in order to reduce such effects as much as possible.
- Tighten screws crosswise.

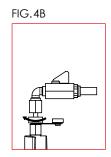
NB: check that the hand wheel is fully open (complete anti-clockwise rotation)

- Position indicator can be set in 4 positions for an easier reading, without changing the valve preset regulation position. (see fig.3):
 - Remove the hand wheel "V" and take the position indicator out by pushing on its lower part.
 - Set the indicator position by rotating it by 90-180-270° (fig. 3C).
 - Screw the hand wheel back on (fig. 3D), taking care to match the gear teeth on the stem and position indicator.

COMMISSIONING


- It is advisable to flush the system clean. Keep the valve fully open when flushing.
- If a system pressure test is required, the maximum allowed pressure PS may be exceeded by up to a maximum of 24 bar. Pressure tests must be carried out at room temperature and with the valve fully open.




MEASURING

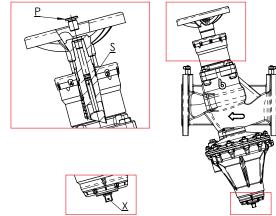
Pay close attention during measurement, in the case of hot media.

- Pressure test plugs are self-sealing. Unscrew the pressure test plug cap and insert the probe (fig. 4A).
- Screw the probe ring nut to the pressure test plug (fig. 4B).
- We recommend placing an isolation valve upstream of the probe.
- After measuring, unscrew and extract the probe. Screw the plug cap back on.

Measuring the flow rate

- Open the valve fully (complete anti-clockwise rotation).
- Screw the pressure gauge connection to the pressure plugs.
- Turn the hand wheel clockwise observing the pressure gauge connection. The gauge indicator is stable as long as the flow rate does not change.
- Stop turning as soon as the gauge indicator moves (differential pressure increasing).
- Take note of differential pressure reading on pressure gauge.
- Calculate the flow rate with the formula:

$$Q = K_{\vee} \cdot \sqrt{\Delta P}$$

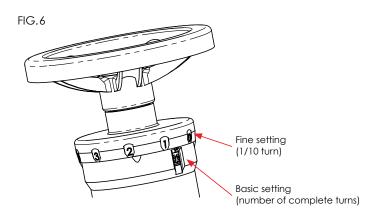

ΔP (bar)	Differential pressure reading on the pressure gauge
K _v	Coefficient of flow rate, taken from the Kv chart, in
•	correspondence with the number of turns made, read on the hand wheel
	position indicator
Q (m ³ /h)	Coefficient of flow rate

• When the measurements have been done, put the valve in the fully open position (complete anti-clockwise rotation of the hand wheel).

REGULATION OF THE DIFFERENTIAL PRESSURE

- Open the valve fully (complete anti-clockwise rotation).
- Remove the upper cover "P", fig. 5.
- Using a screwdriver with a flat head, unscrew air vent "S" and let any air out.
- Tighten until it stops turning, and replace the cover "P".
- To regulate the differential pressure, turn the command screw "X": turn clockwise to increase the differential pressure, up to the preset value, as indicated in the operation field chart.

FIG.5



SETTING

Hand wheel mounting can be set for an easier reading, see chapter entitled "Installation".

The regulation position can be read from the digital setting scales, showing basic settings (number of complete turns) and fine setting (1/10 turn) (fig. 6). Intermediate positions can be adjusted continuously.

Position 0.0 coincides with the valve being fully closed.



SCHEME

In an heating/conditioning plant, because of the distance of the pump and of the plant layout, some user units are subjected to a differential pressure higher than the designed one and so experience overflow, while, on other hand, others could not receive the design flow. In fig. 7A is shown an example scheme; vertical rods represent pressure upstream and downstream the user units, and the rods' red part represent the differential pressure, which varies widely among the circuits $(\Delta P1-2 > \Delta P3-4 > \Delta P5-6 > \Delta P7-8 > \Delta P9-0)$.

The unbalanced differential pressure and flow affects negatively comfort (requested temperature are reached after a long time, or not reached at all, resulting in unstable temperature), control as well the energy consumption raise and wear of user unit control valve.

Placing a balancing valve ART 241 upstream of the user unit, it creates a pressure drop (shown in green in fig. 7B), that provides hydronic balanc and allows to keep the optimum differential pressure on the user unit control valve (in red, $\Delta P1-2 = \Delta P3-4 = \Delta P5-6 = \Delta P7-8 = \Delta P9-0$). A differential pressure control valve gives the further advantage to keep constant the differential pressure across the end user circuit also when modifications occur in the plant (e.g. end user circuit opening/closing, temperature variations).

9a Fallbank Industrial Estate, Dodworth, Barnsley, S75 3LS

Certificate No. 1437B

Distributor