

Bronze / Gunmetal Pressure Reducing Valve

Features

- Suitable for neutral and non-neutral liquids, air, gases, vapours and warm water
- DIN EN 1567, ISO 3822, PED 2014/68/EU
- Marine approvals GL, LR, EMEA, BV, ABS, RS
- ATEX approval available at extra cost
- 24 month warranty
- Test certificate to EN10204-3.1 available on request
- Available in PN25 and PN40

Technical data

Working temp: EPDM or FKM Seal -10°C to +95°C

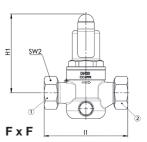
Standard Version

Max Inlet pressure: 40 Bar Outlet pressure: 1 - 8 Bar

Low Pressure Version

Max Inlet pressure: 25 Bar Outlet pressure: 0.5 - 2 Bar

High Pressure Version


Max Inlet pressure: 40 Bar Outlet pressure: 5 - 15 Bar

Not WRAS Approved

Weight

Coefficient of flow kvs

	-	
N. F	Part Name	Materials

	i di titaliic	Materials
1	Inlet body	Bronze / Gunmetal CC499K
2	Outlet body	Bronze / Gunmetal CC499K
3	Internal parts	Bronze / Gunmetal CC499K Stainless Steel 1.4404 (316)
4	Spring	Spring steel with anti-rust protection 1.1200 (EN10270-1)

See overleaf for additional information		5 nn	Strainer	Stainless Steel 316			
occ overlear for addition	DN	15	20	25	32	40	50
Connection M x M		✓	~	~	~	~	~
Connection F x F		✓	~	~	X	X	X
Inlet pressure LP up to	bar	25	25	25	25	25	25
Outlet pressure LP bar		0.5-2	0.5-2	0.5-2	0.5-2	0.5-2	0.5-2
Inlet pressure SP up to	bar	40	40	40	40	40	40
Outlet pressure SP	bar	1-8	1-8	1-8	1-8	1-8	1-8
Inlet pressure HP up to	bar	40	40	40	40	40	40
Outlet pressure HP	bar	5-15	5-15	5-15	5-15	5-15	5-15
Installation dimensions	L	142	158	180	193	226	252
in mm	I	80	90	100	105	130	140
	l1	85	95	105			
	H (H1)	102 (1281)	102 (128¹)	130 (150¹)	130 (150¹)	165 (185¹)	165 (185¹)
	h	33	33	45	45	70	70
	SW1	30	37	46	52	65	75
	SW2	28	35	43	48	57	68

1.3 (1.6¹) 3.5 1 for type 681mGFO-LP V3. Dimensions in mm

1.2 (1.5¹⁾

kg

m³/h

 $2.4(2.9^{1})$

2.6 (3.11)

7.6

5.5 (6.21)

12.5

 $6.0(6.7^{1})$

Typical Applications

- Potable water supply
- Process water supply in industrial and building technology
- Fire-fighting equipment & sprinkler systems
- Shipbuilding industry and offshore plants
- Secondary areas in the food, pharmaceutical and cosmetics industries

Valve version

High-quality, heat-resistant moulded elastomere, fabric-reinforced

diaphragm.

with diaphragm Pressure adjustment by means of non-rising spindle.

Valve insert with balanced single seat valve completely made of stainless

Complete valve insert SP/HP (order code: 681 Insert-DN..-seal) available as replacement part can be exchanged without removing the valve.

Complete valve insert LP (order code: 681 LP Insert-DN..-seal) available as replacement part can be exchanged without removing the valve.

Built-in dirt trap made of stainless steel.

Mesh DN 15 to DN 32 0,60 mm size: DN 40 and DN 50 0.75 mm

Medium

gaseous for water and distilled water, neutral and non-sticking liquids, compressed air and GF and neutral gases; optionally with FPM elastomere seals for non-neutral media i.e.

oils, fuels, oil-laden compressed air etc. liquid

Type of lifting mechanism

0 without lifting device

Outlet pressure ranges

Standard version SP Inlet pressure: up to 40 bar Outlet pressure: from 1 to 8 bar HP High-pressure version Inlet pressure: up to 40 bar Outlet pressure: from 5 to 15 bar LP Low-pressure version Inlet pressure: up to 25 bar Outlet pressure: from 0,5 to 2 bar

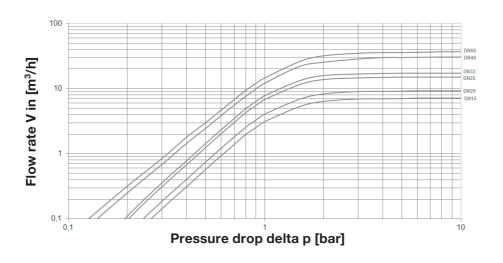
Fixed setting at a required outlet pressure against surcharge.

Seat-Seal/Diaphragm Options

Option Materials Working Temp.

Elastomere moulded diaphragm and seals Ethylene propylene **FPDM** approvals according to drinking water -10°C to +95°C diene

directive


Against surcharge

FKM Fluorocarbon Elastomere moulded diaphragm and seals -10°C to +95°C

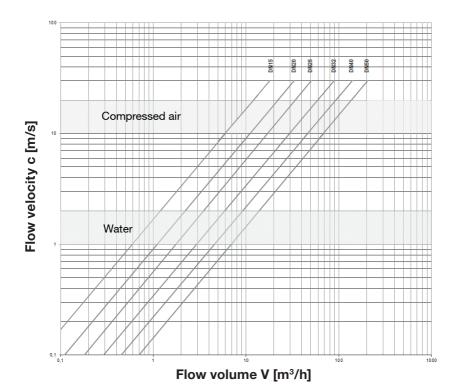
Capacity Charts

Dimensioning by pressure loss on the outlet pressure side Flow chart water

Dimensioning by flow velocity

For Liquids:

With help of the chart you can determine the nominal diameter (DN) for a given flow volume V (m³/h). The ideal flow velocity is between 1m/s – 2m/s.


For compressed air and other gaseous media:

The usual flow velocity for compressed air is 10 - 20 m/s. For gaseous media the flow volume V should always be shown in actual cubic meters/hour.

If the flow volume is given in standard cubic meters, these should be converted into actual cubic meters before using the diagram.

$$V(m^3/h) = \frac{V_{\text{Norm}}(Nm^3/h)}{p_{\text{absolut}}(bar)} = \frac{V_{\text{Norm}}}{p_{\ddot{\text{U}}}+1}$$

Actual cubic meters are based on the prevailing pressure of the medium on the outlet side of the pressure reducer.

